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Comparing Groups Using Robust H Statistic with Adaptive Trimmed Mean 
(Perbandingan Kumpulan Menggunakan H Statistik Tegar dan Min Terpangkas Suai)
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ABSTRACT

An alternative robust method for testing the equality of central tendency measures was developed by integrating H 
Statistic with adaptive trimmed mean using hinge estimator, HQ. H Statistic is known for its ability to control Type I 
error rates and HQ is a robust location estimator. This robust estimator used asymmetric trimming technique, where 
it trims the tail of the distribution based on the characteristic of that particular distribution. To investigate on the 
performance (i.e. robustness) of the procedure, some variables were manipulated to create conditions which are known 
to highlight its strengths and weaknesses. Bootstrap method was used to test the hypothesis. The integration seemed to 
produce promising robust procedure that is capable of addressing the problem of violations to the assumptions. About 
20% trimming is the appropriate amount of trimming for the procedure, where this amount is found to be robust in most 
conditions. This procedure was also proven to be robust as compared to the parametric (ANOVA) and non-parametric 
(Kruskal-Wallis) methods. 
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ABSTRAK

Kaedah alternatif yang teguh bagi menguji persamaan sukatan kecenderungan memusat telah dibentuk dengan 
mengintegrasikan H Statistik dengan min terpangkas suai menggunakan penganggar engsel, HQ. H Statistik dikenali 
kerana kebolehannya untuk mengawal ralat jenis I dan HQ adalah penganggar lokasi yang teguh. Penganggar teguh 
ini menggunakan teknik pemangkasan asimetri, dengan memangkas hujung taburan berdasarkan ciri taburan tersebut. 
Bagi menguji prestasi (iaitu keteguhan) prosedur, beberapa pemboleh ubah dimanipulasi untuk melihat kekuatan dan 
kelemahan prosedur. Kaedah butstrap digunakan untuk menguji hipotesis. Integrasi ini menghasilkan prosedur teguh 
yang mampu menangani masalah pelanggaran andaian. Nilai pemangkas yang sesuai bagi prosedur ini ialah 20% 
dan didapati tegar dalam kebanyakan keadaan yang dikaji. Prosedur ini juga telah terbukti teguh berbanding kaedah 
parametrik (ANOVA) dan kaedah tidak berparametrik (Kruskal-Wallis).

Kata kunci: Butstrap; H statistik; min terpangkas asimetri; penganggar engsel; ralat jenis I; statistik teguh

INTRODUCTION

In recent years, there have been extensive studies regarding 
the test on the equality of central tendency measures in 
terms of their robustness. However, researchers in the field 
of social sciences, economics and business for example are 
still attached to the classical tests which are known because 
of its capacity to comprehensively describe information in 
the data. When testing for more than two groups, ANOVA 
will be the most commonly chosen method. Unaware to 
most of them, this method will be unreliable and produce 
misleading results when there is any violation in the 
assumptions. ANOVA has several assumptions that need to 
be fulfilled before the procedure can be applied. The main 
assumptions are such that the data should be normally 
distributed and variances are homogenous. In real situation, 
these assumptions are often violated and to obtain the ideal 
data which satisfy all the assumptions is hardly achieved 
(Wu 2007). Apparently, using data that are not normally 
distributed with variances that are heterogeneous can cause 
inaccuracy in the analysis, which will directly mislead the 

result. According to Wilcox (2012), researcher who falsely 
assuming normality distributed data risk obtaining biased 
tests and relatively high Type II error rates for many pattern 
of non-normality, especially when variance homogeneity is 
not satisfied. Moreover, the analysis with non-normal data 
with heterogeneous variances will run the risk of drawing 
false conclusion from the analysis. 
 However, there are several alternatives to recover from 
the limitations of the classical tests such as by trimming 
the data, transforming the data, using the distribution-
free test (non-parametric) (Zar 1996). A non-parametric 
procedure such as Kruskal-Wallis offers an alternative 
solution to overcome this problem. Non-parametric tests 
do not require parametric assumptions because interval 
data are converted to rank-ordered data and well-known 
alternatives for dealing with the problem of non-normality. 
Nevertheless, the non-parametric procedures are criticized 
over the following reasons: Non parametric procedures 
possess less power as compared with the classical tests 
and need larger sample size to reject a false hypothesis 
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(Syed Yahya 2005). Yu (2010), in his article noted that 
non-parametric procedures are unable to estimate the true 
population as they do not make strong assumptions about 
the population and as a consequence, researchers could not 
make inference that the sample statistics are estimates of 
the population parameters. 
 Robust statistical procedures have solution to the 
aforementioned problems. They are often used when 
the data violate any of the normality and homogeneity 
assumption or both. Robust statistical procedures are 
insensitive and stable towards the violations of these 
assumptions. The procedures also deal effectively with 
outliers. Inspired by the goodness of robust methods, 
the objective of this study was to propose a new robust 
test of central tendency measures as an alternative to the 
classical in dealing with non-normality and inequality of 
variances. Our proposed robust method is known as  
i.e a modification of H Statistic by integrating adaptive 
trimmed means as the central tendency measure using 
hinge estimator, HQ.

THE ADAPTIVE TRIMMED MEAN

There are many types of robust estimators to estimate 
the central tendency measures. One of the estimators 
is trimmed mean. Wilcox (2012) stated that trimmed 
mean is relatively insensitive to outliers. It is computed 
by removing a proportion of the largest and smallest 
observations and calculates the mean of the remaining 
observations (Wilcox 2005). 
 The idea behind trimmed mean is to use a compromise 
amount of trimming with the goal of achieving a relatively 
small standard error under both normal and non-normal 
distribution. Luh and Guo (1999) acknowledged that 
trimmed mean has an advantage of having a standard error 
that is less affected by heavy-tailed distributions or outliers. 
In particular, the trimmed mean is less sensitive to extreme 
deviation and the non- normal distribution data. 
 Trimming are done using either symmetric or 
asymmetric trimming approach. For symmetric trimming, 
data are trimmed with equal proportion on both tails. 
However, when the data are asymmetric, trimming both 
tails with equal amount is no longer appropriate. In such 
case, the data need to be trimmed with different amount for 
each tail since sample with longer tail is likely to contain 
more outliers.
 Unlike the symmetric trimming, the proportion of 
data to be trimmed in asymmetric trimming need to be 
determined for each tail before the trimming process 
is performed based on the characteristic of the data. 
This approach of trimming is called adaptive trimming 
(Keselman et al. 2007). Since the data are not always 
symmetric in nature, researchers should always consider 
the asymmetric trimming approach. Furthermore, the 
standard deviation are relatively smaller for the adaptive 
trimmed mean as compared with the usual trimmed mean 
with fixed amount for both tails (Reed & Stark 1996).

 Keselman et al. (2005) found that tests on the equality 
of groups performed very well with respect to Type I 
error control in non-normal heteroscedastic distribution 
when adopting robust estimators based on asymmetric 
trimming of the data. Baguio (2008) proposed the adaptive 
robust estimator for the Weibull distribution and the study 
showed that the adaptive robust estimator was efficient 
when dealing with this type of distribution. Keselman et 
al. (2007) examined nine adaptive methods of trimming 
and observed that eight of the methods have good control 
of Type I error depending on the degree of non-normality 
and variance heterogeneity. 

METHOD

H STATISTIC

H Statistic was proposed by Schrader and Hettmansperger 
(1980) and this statistic is readily adaptable to any 
measure of location. To understand the H statistic, let X(1), 
X(2), … …, X(nj)j, be an ordered sample of group j where 
j = 1, 2, …J. Then, the H statistic can be defined as:
        
 H = θ θ  (1)

where, the overall sample N is determined by number of 
sample in each group nj, as in (2).
        
 N = Σjnj. (2)

The mean of the location measures, θ . , is defined as:
        
 θ . = Σj θ    j  /J. (3)

 Schrader and Hettmansperger (1980) indicated that 
this statistic can integrate with any measure of location. In 
this study, the adaptive trimmed mean with hinge estimator 
is used as the location measure in each group ( θ    j  ) for H 
Statistic.

HINGE ESTIMATORS

Hinge estimators were proposed by Reed and Stark (1996). 
They produced seven hinge estimators which are HQ, HQ1, 
HQ2, HH1, HH3, HSK2 and HSK5. Among these estimators, 
Keselman et al. (2007) declared HQ as one of the top three 
best estimators and known to have good control of Type I 
error rate. They adopted the work of Hogg (1974) and Reed 
and Stark (1996) to define adaptive trimmed mean based on 
the measure of tail length for HQ. The HQ is defined in (4).

        
 Q =  (4)

 
 The value of Q is used to classify symmetric 
distribution as light-tailed, medium tailed or heavy-tailed. 
Values of Q < 2 imply light-tailed distribution, 2.0 < Q 
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≤ 2.6 is a medium-tailed distribution, 2.6 < Q ≤ 3.2 is a 
heavy-tailed distribution and Q > 3.2 is a very heavy-tailed 
distribution. U(0.05) and L(0.05) are the mean of the upper and 
lower 5% of the order statistics of the combined samples 
while U(0.5) and L(0.5) are the mean of the upper and lower 
50% of the order statistics of the combined samples.
 Reed and Stark (1996) defined hinge estimators HQ 
as:
        
 HQ =  (5)

where, UWQ  and LWQ  are  calculated:
         
 UWQ = [ΣJnj(U0.05 – L0.05]/Σjnj. (6)

and
          
 LWQ = [ΣJnj(U0.5 – L0.5]/Σjnj. (7)

H STATISTIC WITH HQ  

To insert HQ to the H Statistic, firstly, we estimated the 
proportion to be trimmed from the lower end of the sample, 
as the following equation:
        
 αl = α[UWQ/(UWQ + LWQ)]. (8)

The upper end of the sample is given:
        
 αu = α – αl, (9)

where, α is set as a trimming percentage and in this study 
we used 10, 15, 20 and 25% of trimming (α = 0.1. 0.15, 
0.2, 0.25).
 Let Y(1)j ≤ Y(2)j ≤ … ≤ Y(n)j represent the ordered 
observations associated with the jth group. The trimmed 
mean for each group is calculated based on the following 
formula:
        
  (10)

where,
        
 g1 = [njαu]. (11)

        
 g2 = [njα1].  (12)

        
 h = nj – g1 – g2, (13)

 (g1 and g2 represent the amount of trimming from the upper 
and lower tail, respectively).
 Subsequently, we substitute θj in (1) with  as 
calculated in (10) to obtain :
        
  (14)

where
        
 N = Σjnj, (15)

and
        
  (16)

  is the trimmed mean for group j and  is the average 
trimmed mean for all groups. 

VARIABLES MANIPULATED

In order to investigate the robustness of the statistic, we 
manipulated five variables; percentages of trimming, 
balance and unbalance sample sizes, types of distribution, 
degree of variance heterogeneity and nature of pairings.
 The purpose was to create various conditions with 
the procedure based on its ability to control Type I error 
rates. In investigating the performance of under 
various trimming percentages, four amount of trimming 
were assigned namely, α = 0.1, α = 0.15, α = 0.2, α = 0.25. 
Later in the study, the best trimming for the procedure will 
be recommended. Comparison was done on four groups 
(J = 4) of completely randomized design for balanced 
and unbalanced sample sizes (nj). Previous research by 
Othman et al. (2004) using total sample sizes of 70 and 
90, respectively, produced Type I error rates close to the 
nominal value of α = 0.05. Therefore, it can be inferred 
that total sample size of any value within the 70 and 90 
range should produce reasonably good Type I error rates. 
For the convenience of comparison, the total sample sizes 
were kept constant at 80. The distribution of the balanced 
sample sizes among the four groups were n1 = n2 = n3 = n4 
= 20. While for the unbalanced sample sizes, the groups 
with different number of observations were distributed as 
n1 = 10, n2 = 15, n3 = 25, n4 = 30.
 In order to examine the effect of non-normality on 
the performance of the , three types of distributions 
had been chosen; standard normal distribution, g-and-h 
distribution with g=0.5 and h=0, and g-and-h distribution 
with g=0.5 and h=0.5. The standard normal distribution 
represents distribution with zero skewness, while g-and-h 
distribution with g=0.5 and h=0 represents skewed normal-
tailed and g=0.5 and h=0.5 represents skewed heavy-
tailed. The other assumption that is often violated is the 
homogeneity of the variances. In order to investigate the 
effect of variance heterogeneity on Type I error rates, we 
assigned three degree of variances i.e. equal variances, 
mild and extreme degree of heterogeneity. Equal variances 
were set at 1:1:1:1 and for mild and extreme degree of 
heterogeneity, the unequal variances were assigned at 
4:8:16:36 and 1:1:1:36, respectively. When unequal 
variances were paired with unequal sample sizes, two 
types of pairings were formed, i.e. negative and positive 
pairings. A positive pairing involved the pairing of the 
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largest number of group observations with the largest group 
variance and the smallest group of observations with the 
smallest group variance. As for negative pairing, the group 
with the largest number of observations was paired with 
the smallest group variance, while the smallest group of 
observations was paired with the largest group variance.
 In order to generate data that follow the above 
conditions, we simulated the data using the SAS/IML 
version 9.1. The study on distributional shape required the 
simulation of data according to the type of distribution. 
The data generation procedure using SAS/IML for 
procedure is explained as follows:

NORMAL DISTRIBUTION

Standard normal distribution used straight forward usage 
of SAS generator RANNOR with mean 0 and standard 
deviation 1.
 For the g = h = 0.5 distribution, we generated standard 
normal distribution as in (a) and transform the standard 
normal distribution to random variables via (17):

        
  (17)

 The parameter g controls the amount of skewness, 
while parameter h controls the kurtosis.
 Next, for the g = 0.5, h = 0 distribution, we modified 
(17) such that:

 Yij =  (18)

 Since the sampling distribution of H statistic is 
unknown, bootstrap method was used to test the hypothesis. 
In order to calculate the Type I error rate, 5000 datasets 
were generated and each data set was bootstrapped 599 
times. In evaluating the robustness of each procedure, 
we adopt Bradley’s (1978) liberal criterion of robustness. 
According to this criterion, in order for a procedure to be 
considered robust, its empirical rate of Type I error (ά) must 
be within 0.5α ≤ ά ≤ 1.5α. Therefore, for the 0.05 level 
of significance used in this study, the procedure would be 
considered robust in a particular condition if its empirical 
rate of Type I error falls within 0.025 ≤ ά ≤ 0.075. The 
proposed procedure was then compared with the parametric 
and non-parametric procedures represented by ANOVA and 
Kruskal Wallis, respectively and the results are shown in 
the following section.

RESULTS

Altogether, a total of 108 conditions were investigated 
from 6 procedures including ANOVA and Kruskall Wallis. 
The other 4 procedures were with different trimming 
percentages. Each procedure consists of 18 conditions. The 
results are displayed in Tables 1 – 3. For , 58.3% of the 
conditions are robust for 10% trimming, 79.2% are robust 
for both 15% and 25% trimmings, while 20% trimming 
gained the highest percentage with 87.5%. 
 Type I error rates for balanced design with homogenous 
variances are shown in Table 1. In the first row, which 
represent the ideal condition, the Type I error rates for 
all the procedures fall between the liberal criterion of 
robustness with values ranging from 0.0498 to 0.0608. 
Even for the skewed normal-tail data on the second row, 
the Type I error rates fall within the robust interval. This 
signifies that under zero and mild skewness, all procedures 
including the parametric and non-parametric are robust. 
However, as the tail becomes heavier, the results of  
procedure become more conservative especially at 15 and 
25% trimming where the Type I error rates are observed to 
be below the lower limit of the interval. For this condition, 

with 20% trimming, ANOVA and Kruskal Wallis 
maintain to be robust.
 Table 2 shows the results for unbalanced design with 
homogeneous variances across distributions. Similar with 
the results from Table 1, the 20% trimming, ANOVA and 
Kruskal Wallis are proven to be robust in all conditions, 
meanwhile for 10% trimming, the Type I error rate 
becomes liberal even when the distribution is normal. On 
the other hand, at 15 and 25% trimming, the rates become 
conservative with values less than 0.025. 
 The performance of the procedures under unbalanced 
design with heterogeneous variances is presented in Table 
3. There is an additional of two extra columns which 
depict the different degrees of variance heterogeneity and 
different pairings of group variances and sample sizes. 
These types of data are common in real life when almost all 
the assumptions of classical tests are violated (Wu 2007). 
As could be observed, both ANOVA and Kruskal Wallis 
become liberal with Type I error rates ranging from 0.1448 
to 0.3546 and 0.0794 to 0.1158, respectively, when dealing 
with negative pairings conditions. The results worsen when 
the tails become heavier. ANOVA is the worst procedure 
under extreme conditions (skewed heavy tail). This 
procedure fails to control Type I error with only 5 out of 12 
conditions are proven robust. Meanwhile, the  using 

TABLE 1. Type I error rates for equal sample size, N = 80 (20,20,20,20) with homogenous variances, (1,1,1,1)

Distributions 10% 15% 20% 25% ANOVA Kruskal-Wallis
Normal 0.06080 0.05440 0.05080 0.05060 0.0518 0.0498
Skewed normal-tailed 0.05700 0.61800 0.03740 0.03640 0.055 0.0498
Skewed heavy-tailed 0.01800 0.02240 0.03680 0.01580 0.029 0.0498
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10% trimming also does not perform well as compared with 
the other trimming percentages. The 15 and 20% trimming 
show similar pattern under extreme variance heterogeneity, 
36,1,1,1 for negative cases. The three conditions produced 
liberal Type I error rates even when sampling from normal 
distribution. Under the influence of unbalanced design 
with heterogeneous variances, 25% trimming produces 
the best result when 10 out of 12 conditions are identified 
to be robust.
 In general, among all the trimming percentages 
investigated, the 20% trimming is the appropriate amount 
of trimming for  procedure, where this amount is 
found to be robust in most conditions (15 out of 20). The 
next in sequence are 25%, 15% and 10% trimmings with 
14, 11 and 10 of the conditions are robust, respectively.

CONCLUSION

From the overall results, we observe that the proposed 
procedure , has good control of Type I error. As 
shown in the analysis, most of the empirical Type I 
error rates of the procedure fall within Bradley’s liberal 
criterion of robustness interval i.e. between 0.025 and 
0.075, as compared with ANOVA and Kruskal Wallis. The 

 procedure is on par with ANOVA and Kruskal Wallis 
under ideal condition. However, under extreme condition, 

 was proven to be extremely better than ANOVA and 
Kruskal Wallis. This indicates that under severe violation 
of assumptions, parametric and non-parametric procedures 
are unable to control Type I error rates. The inflation of 

Type I error rates will cause the null hypothesis to be 
spuriously rejected. 
 In order to avoid from drawing false conclusion, 
we suggest the 20% trimming of  procedure as 
this procedure is as good as the parametric and non-
parametric procedures when the assumptions are satisfied 
and maintains its good performance in controlling Type I 
error (robust) even under severe violation of assumptions. 
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